Initial objects #4
|
@ -4,12 +4,19 @@ module Categories.Category.Instance.Thinnings where
|
|||
|
||||
open import Categories.Category.Core
|
||||
open import Categories.Category.Helper
|
||||
open import Data.List.Base using (List)
|
||||
open import Categories.Object.Initial
|
||||
open import Data.List.Base using (List; [])
|
||||
open import Level using (Level)
|
||||
open import Relation.Binary.PropositionalEquality
|
||||
|
||||
open import Thinning
|
||||
open import Thinning.Properties
|
||||
|
||||
private
|
||||
variable
|
||||
a : Level
|
||||
A : Set a
|
||||
|
||||
Thinnings : ∀ {a} (A : Set a) → Category a a a
|
||||
Thinnings A = categoryHelper record
|
||||
{ Obj = List A
|
||||
|
@ -23,3 +30,9 @@ Thinnings A = categoryHelper record
|
|||
; equiv = isEquivalence
|
||||
; ∘-resp-≈ = cong₂ _∘_
|
||||
}
|
||||
|
||||
[]-isInitial : IsInitial (Thinnings A) []
|
||||
[]-isInitial = record { !-unique = ¡-unique }
|
||||
|
||||
initial : Initial (Thinnings A)
|
||||
initial = record { ⊥-is-initial = []-isInitial }
|
||||
|
|
|
@ -45,3 +45,9 @@ end ∘ end = end
|
|||
include α ∘ include β = include (α ∘ β)
|
||||
include α ∘ exclude β = exclude (α ∘ β)
|
||||
exclude α ∘ β = exclude (α ∘ β)
|
||||
|
||||
-- There is always a Thinning from the empty list to any list. Here we exclude
|
||||
-- at every step.
|
||||
¡ : Thinning A [] xs
|
||||
¡ {xs = []} = end
|
||||
¡ {xs = x ∷ xs} = exclude ¡
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
module Thinning.Properties where
|
||||
|
||||
open import Data.List.Base using (List)
|
||||
open import Data.List.Base using (List; [])
|
||||
open import Level using (Level)
|
||||
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong)
|
||||
|
||||
|
@ -48,3 +48,8 @@ assoc (exclude θ) (include φ) (include ψ) = cong exclude (assoc θ φ ψ)
|
|||
assoc (exclude θ) (include φ) (exclude ψ) = cong exclude (assoc (exclude θ) (include φ) ψ)
|
||||
assoc (exclude θ) (exclude φ) (include ψ) = cong exclude (assoc (exclude θ) φ ψ)
|
||||
assoc (exclude θ) (exclude φ) (exclude ψ) = cong exclude (assoc (exclude θ) (exclude φ) ψ)
|
||||
|
||||
-- ¡ is the only Thinning from []
|
||||
¡-unique : (θ : Thinning A [] xs) → ¡ ≡ θ
|
||||
¡-unique end = refl
|
||||
¡-unique (exclude θ) = cong exclude (¡-unique θ)
|
||||
|
|
Loading…
Reference in New Issue