Triangles #5
|
@ -0,0 +1,33 @@
|
||||||
|
{-# OPTIONS --safe --without-K #-}
|
||||||
|
|
||||||
|
module Categories.Category.Instance.Thinnings.Properties where
|
||||||
|
|
||||||
|
open import Categories.Category.Instance.Thinnings
|
||||||
|
open import Categories.Category.Slice
|
||||||
|
open import Data.List.Base
|
||||||
|
open import Level
|
||||||
|
open import Relation.Binary.PropositionalEquality
|
||||||
|
|
||||||
|
open import Thinning.Triangle
|
||||||
|
|
||||||
|
private
|
||||||
|
variable
|
||||||
|
a : Level
|
||||||
|
A : Set a
|
||||||
|
zs : List A
|
||||||
|
|
||||||
|
module _ where
|
||||||
|
|
||||||
|
open SliceObj
|
||||||
|
open Slice⇒
|
||||||
|
|
||||||
|
-- Morphisms between two objects in a slice category over thinnings are unique!
|
||||||
|
-- We prove this using triangles.
|
||||||
|
Slice⇒-unique : ∀ {θ φ : SliceObj (Thinnings A) zs} (f g : Slice⇒ (Thinnings A) θ φ) → h f ≡ h g
|
||||||
|
Slice⇒-unique {zs = zs} {θ = θ} {φ = φ} (slicearr {h = hf} ▲) (slicearr {h = hg} △) = triangleUnique ▴ ▵
|
||||||
|
where
|
||||||
|
▴ : Triangle _ (arr φ) hf (arr θ)
|
||||||
|
▴ = subst (Triangle _ _ _) ▲ (arr φ ⊚ hf)
|
||||||
|
|
||||||
|
▵ : Triangle _ (arr φ) hg (arr θ)
|
||||||
|
▵ = subst (Triangle _ _ _) △ (arr φ ⊚ hg)
|
|
@ -0,0 +1,55 @@
|
||||||
|
{-# OPTIONS --safe --without-K #-}
|
||||||
|
|
||||||
|
module Thinning.Triangle where
|
||||||
|
|
||||||
|
open import Level
|
||||||
|
open import Data.List.Base
|
||||||
|
open import Relation.Binary.PropositionalEquality
|
||||||
|
|
||||||
|
open import Thinning
|
||||||
|
|
||||||
|
private
|
||||||
|
variable
|
||||||
|
a : Level
|
||||||
|
A : Set a
|
||||||
|
x : A
|
||||||
|
xs ys zs : List A
|
||||||
|
θ φ φ′ ψ : Thinning A xs ys
|
||||||
|
|
||||||
|
-- Thinning triangles
|
||||||
|
------------------------------------------------------------------------
|
||||||
|
|
||||||
|
-- These are a sort of inductive view of "φ ∘ θ ≡ ψ" that's much easier to work
|
||||||
|
-- with than a more direct definition. This helps a lot when working with slice
|
||||||
|
-- categories!
|
||||||
|
|
||||||
|
-- I choose the order of arguments to match composition order. The names are by
|
||||||
|
-- the second argument, with "occlude" as another word that rhymes. Any aptitude
|
||||||
|
-- is purely accidental.
|
||||||
|
|
||||||
|
data Triangle (A : Set a) : Thinning A ys zs → Thinning A xs ys → Thinning A xs zs → Set a where
|
||||||
|
end : Triangle A end end end
|
||||||
|
include : Triangle A θ φ ψ → Triangle A (include {x = x} θ) (include φ) (include ψ)
|
||||||
|
occlude : Triangle A θ φ ψ → Triangle A (exclude {x = x} θ) φ (exclude ψ)
|
||||||
|
exclude : Triangle A θ φ ψ → Triangle A (include {x = x} θ) (exclude φ) (exclude ψ)
|
||||||
|
|
||||||
|
-- We can construct a triangle by composition
|
||||||
|
_⊚_ : (θ : Thinning A ys zs) (φ : Thinning A xs ys) → Triangle A θ φ (θ ∘ φ)
|
||||||
|
end ⊚ end = end
|
||||||
|
include θ ⊚ include φ = include (θ ⊚ φ)
|
||||||
|
include θ ⊚ exclude φ = exclude (θ ⊚ φ)
|
||||||
|
exclude θ ⊚ φ = occlude (θ ⊚ φ)
|
||||||
|
|
||||||
|
-- We can deconstruct a triangle into a proof of equality to the composition
|
||||||
|
untriangle : Triangle A θ φ ψ → θ ∘ φ ≡ ψ
|
||||||
|
untriangle end = refl
|
||||||
|
untriangle (include ▴) = cong include (untriangle ▴)
|
||||||
|
untriangle (occlude ▴) = cong exclude (untriangle ▴)
|
||||||
|
untriangle (exclude ▴) = cong exclude (untriangle ▴)
|
||||||
|
|
||||||
|
-- If we have two triangles with common edges, the third edge must also be equal
|
||||||
|
triangleUnique : Triangle A θ φ ψ → Triangle A θ φ′ ψ → φ ≡ φ′
|
||||||
|
triangleUnique end end = refl
|
||||||
|
triangleUnique (include ▴) (include ▵) = cong include (triangleUnique ▴ ▵)
|
||||||
|
triangleUnique (occlude ▴) (occlude ▵) = triangleUnique ▴ ▵
|
||||||
|
triangleUnique (exclude ▴) (exclude ▵) = cong exclude (triangleUnique ▴ ▵)
|
Loading…
Reference in New Issue