Triangles #5
|
@ -0,0 +1,33 @@
|
||||||
|
{-# OPTIONS --safe --without-K #-}
|
||||||
|
|
||||||
|
module Categories.Category.Instance.Thinnings.Properties where
|
||||||
|
|
||||||
|
open import Categories.Category.Instance.Thinnings
|
||||||
|
open import Categories.Category.Slice
|
||||||
|
open import Data.List.Base
|
||||||
|
open import Level
|
||||||
|
open import Relation.Binary.PropositionalEquality
|
||||||
|
|
||||||
|
open import Thinning.Triangle
|
||||||
|
|
||||||
|
private
|
||||||
|
variable
|
||||||
|
a : Level
|
||||||
|
A : Set a
|
||||||
|
zs : List A
|
||||||
|
|
||||||
|
module _ where
|
||||||
|
|
||||||
|
open SliceObj
|
||||||
|
open Slice⇒
|
||||||
|
|
||||||
|
-- Morphisms between two objects in a slice category over thinnings are unique!
|
||||||
|
-- We prove this using triangles.
|
||||||
|
Slice⇒-unique : ∀ {θ φ : SliceObj (Thinnings A) zs} (f g : Slice⇒ (Thinnings A) θ φ) → h f ≡ h g
|
||||||
|
Slice⇒-unique {zs = zs} {θ = θ} {φ = φ} (slicearr {h = hf} ▲) (slicearr {h = hg} △) = triangleUnique ▴ ▵
|
||||||
|
where
|
||||||
|
▴ : Triangle _ (arr φ) hf (arr θ)
|
||||||
|
▴ = subst (Triangle _ _ _) ▲ (arr φ ⊚ hf)
|
||||||
|
|
||||||
|
▵ : Triangle _ (arr φ) hg (arr θ)
|
||||||
|
▵ = subst (Triangle _ _ _) △ (arr φ ⊚ hg)
|
Loading…
Reference in New Issue